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1. Let us consider an arbitrary holonomic mechanical system, and let 

Ql, *a*# q, be its independent Lagraugian coordinates, and ql’, l **, Q” 
, 

be its generalized velocities. We shall assum that the equations of 
motion of the system have the particular solution 

4r = fr 0) (i = i, . . . , n) (1.1) 

corresponding to the unperturbed motion. 

Let to be the initial instant of the time t, and qto aud qio’ be the 
initial values of the variable Qi and its time derivative qi’. 

Let for the unperturbed mtion 

Qio = ff (to), 
and for the perturbed motion 

Qio = f&O) + % 

Qro’ = fi’ (to) 

Qto’ = Ii’ (to) 4 6t’ 

Whereti Ce’ are real constants desiguated as perturbatims. ‘Ihe intro- 
duction of ihese constants defines repletely the perturbed motion, be- 
cause the forces acting on the system are assumed to remain mchanged 
[ll. 

Qi’ 

let the values of the coordinates Qi and of the generalized velocities 
for the perturbed motion be 

Qi = li (t) + 39 Qi = fi’ (t) + %+i 

where xi(t), (j’= 1, . ..) 

Qj’P 
2n) are the variations of the variables qi and 

which satisfy the equations of the perturbed motion 

drj 
- = Xj (t* 51, * - * 3 z*) 
dt 

(i = I, . . . . , Zn) (1.2) 

59 
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We shall ass- that for every t > to the functions Xj(t, xl, . . . . 
zZ,,) can be expanded in convergent power series with integral exponents 
in the variables x1, . . . . x dose coefficients are real continuous 
functions of t, with xj(t, I:' . ..) 01-O. 

We are interested in the stability of the unperturbed motion (1.1) with 
respect to certain real continuous functions Q1, .,., Q, of the vari- 
ables Qi, qt' and the time t. For the unperturbed motion the functions 
Q, after substituting in them qi = f 
certain hnown functions of the time 4 

(t) and qi' = fi'(t) transform into 
,(t), and for the perturbed motion 

they will transform into certain functions of the time t and of the per- 
turbations ci, c .'. Considering the differences y = Q, = F,, Liapunov 
called the unpe&bed motion (1.1) stable with r&ect to the quantities 

Q 
u;: H;;' 

Qk, if for all L,, houever small, there exist positive numbers 
such that for any ci, 6 i' satisfying the condition 

. 
IsiI\<& IdI\<& 

and for any t > tO, the following inequalities hold: 

M<L8 (I = i, . . . ( k) 

We shall as- further [ll that to any set of real values of the 
perturbations c ., t t' 

i 
nunarically sufficiently small, there corresjwnds 

a certain set o real initial values y,& of the varisblee y,, and that 
we could always satisfy the inequality 

yr?+ -- .+yd<A 

for any positive value of A, hasever small, if the absolute values of the 
perturbaticuu3 are not greater than sufficiently -11 non-zero nwlbera 

'i, 'i'. And conversely, for given positive n&rs B,, Bi', however 
small, there exists such a pitire rnmber A, that to the quantity ylo2 + 

2 ( A tkre correspa& one or several sets of real ti, tic 
C '&lute values are smaller than B, and E,' respectively. 

Since the variablesyg, represent certain functioms of the variableat, 

zj, v~ishiqi~whenallx~- 0, (j- 1, . ..) 2n 1, then the region of 
variatiw of the real variable8 t, xl, .--, X2” 

t > to, q* + * - - + %?I2 < H 11.3) 
where to aad R> 0 are constants, till correspond to the region 

t >/to, Y2 + * * . + ?/k2 < HI (4.4) 

of variatioms of the variable8 t, y,, dmre A, > 0 is a constant. 

We shall ass- that (1.2) yields the first integral 

‘p (z,, . . . ) zgn, t) = const (l-5) 
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where 4 (x1, . ..) xtn, t) is a real, continuous, bounded, single-valued 
function of its variables in the region (1.3) vanishing when all the 
variables xi are zero. suppOse also that at all values of the variables 
t, x j in the region ( 1.3) and at all corresponding values of the vari- 
ables t, yI in the region (1.4) the following inequality is satisfied: 

@ (Yl, * - - 7 Yk, t) <‘p(% . . . 9 %I, ‘) (4.6) 

Hf3-e @(Y,, a**, y # 
3 

t 1 is a real, continuous, bounded, single-valued 
fuuction of its vari les in the region (1.41, vanishing when all the y, 
are zero. We can prove now the following theorem: 

27uorer. If the differential equations of the perturbed motion (1.2) 
a&it a first integral (1.5) and it is possible to find a positive- 
definite fuuctiou Cp ( yl, . . ., yk, t 1 such that the inequality ( 1.6) is 
satisfied for all values of the variables t, x . in the region (1.3) aud 
for all the corresponding values of the variab es i t, y in the region 
(1.41, then the unperturbed motion (1.1) is stable witt respect to the 
quantities Q1, . . . . Q&O 

Roof. Ill . According to the definition of a definite fuuction we 
can find a positive-definite function V<yI, . . . . 
such that in the region (1.4) the inequality 

y&I iudependent of t , 

holds. 

Let A > 0 be an arbitrarily small number, smaller than B 
be the exact lower bound of the function W on the sphere (A f 

, and let 2 
: 

Y? + . ..+yk==A 

The nmber 1 is obviously positive, since II represents a positive- 
definite function. 

b shall examine the function q5 ( x1, . . . . xqnr to); since it does not 
depend explicitly on the time, it can have an infinitely mall upper 
bouud; consequently, mv CM find for I values A aud A, such that when 
the corresponding values of x. 
+ rZn2 < A smd yl* + . . . + ‘2 

and y, satisfy the conditions xl* + . . . 
yI 4 A, respectively, the functiam @ ( yl, 

. l . yk8 t,) and &(x1, . . . , zrn, t,) will satisfy the couditious 

@ (!/Iv - * * , yk,to)\<Q(st...t~,tO)<E 

&en the initial values of the variables x ., aud the correspcmding 
variables y, are chosen to satisfy the inequ av ity xLOt + . . . + x22n o 6 
A , aud the corresponding inequality yloZ + . . . + y*bo < A,, then * 
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according to the conditions of the theorea~ we have the inequalities 

We can conclude here, that the vxiablea y, satisfy the condition 

Y2 + -a+&‘<A 

since 2 is the exact lower bound of the function II on the sphere 01). 
Ihe theorem is proved. 

Mote. If instead of (1.6) we had the inequalitx 

(p(Yl*..., YpOd9 hV..,~~ 4 +c (C>O) 

then for a aaitablr chosen value of xi0 and for all values of the tiaa 
the Inequality g12 + . . . + ykz < A would be aatlsfied, where A is a 
number such that the exact lower bound of the function I on the sphere 
(A) is greater than the number C. 

As an example we shall consider the well known problem of stability 
of rotation about a vertical axis of a hearj rigid body in the case of 
Lagrange [ 1 I. 

Let p, 9, r be the projections of the instantaneous angular velocity 
of a rigid body on Its prlacipal axes of inertia with respect to a fired 
point; let y. y’, y?- be the direction cosines of the vertical aria with 
respect to the principal axes of inertia. The projections of the angular 
momentum on these axes sre 

Gl=Ap, Ga=Aq, G,=Cr 

where A, C are the principal momenta of Inertia of the rigid body with 
respect to Its fixed point. 

ga shall Investigate the stability of rotatfoa of the body about the 
vertical axis 

p=q=o, r = ro, 7=-f=o, T.‘i W) 

sith ntavect to the quantities Cl, C,, GS, y, y’, y”,- assuming that in 
the Detturbed motion 

Gs=G+w. y=1+8 (G = Cro) 

and retaining the previous symbols for the remaining variables. 

On the strength of the obvious Inequality 

Gas + Gss + xs < D (Ap’ + Aq’ + CC”) (lc = CC) - 

where D Is the greater of the two quantities A and C. the values of the 
function 
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Q&) (W + G? + x2) + 2A (Gcf + G-f’ + x8) - (mgz + GA) (7% + fa + 82) (1.10) 

for the perturbed motion are not greater than the values of the function 

‘p E VI + 2hV, - (mgz + GA) Vz - 2 (C + CA) V, = const 

where Yi(i = 1. . . . . 4) are the first integrals of the equations of the 
perturbed motion (See [ 1 ] page 27). x is a constant, mg is the weight 

of the body, z Is the coordinate of the center of gravity. 

According to the just-proved theorem the conditions for the positive- 
definiteness of the function (1.10) yield the sufficient conditions for 
stability of the unperturbed motion (1.9); this last condition could be 
reduced to the Inequality 

Gz - BDmgz > 0 (1.11) 

It is easily seen that if the above inequality Is satisfied, then the 
Malevskii’s condition C2r02 - 4 Aagt > 0 is also satisfied; it Is well 
known that this last condition is the necessary and sufficient condition 

for the stability of (1.9)). 

2. Ihe theory given above could be useful in the application of the 
second Liapunov method to the problems of stability of motion of con- 
tinuous media with respect to a finite nmber of parameters, which 
describe the motion through integrals, [2 1. Such parameters could be, 
for exmple, the coordinates of the center of gravity of a bounded 
volme of a continuous mediun, or projections of its linear manentm on 
certain axes, or similar quantities, whose variations with time are 
described by ordinary differential equations. l'he stability of motion of 
a continuous medium with respect to the above mentioned parameters will 
be called the conditional stability of motion of a continuous medim. 

As au example we shall consider the problem of stability of rotation 
of a solid with a liquid-filled cavity, with respect to the parameters 
describing the motion of the solid end to the projections of the sngular 
moment- of the liquid I2 I. 

We shall consider a free solid with completely or partially liquid- 
filled cavity, and the liquid is assuned to be ideal, non-compressible 
and homogeneous. We shall also assume, for simplicity, that the central 
ellipsoid of inertia of the solid is an ellipsoid of revolution, and the 
cavity is also a body of revolution whose axis coincides with the axis 
of the ellipsoid. In the case when the liquid has a free surface we shall 
regard the pressure on it to be constant. We shall also assune that the 

motion of the liquid is continuous, and that the velocities of the liquid 
particles and the pressure are continuous functions of the coordinates. 
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Since among the possible displacements of the body and the liquid in 
its cavity are rotations about an arbitrary axis and also translatory 
displacements of the whole system, the solid plus the liquid, as a single 
rigid body, the theorem of the angular momentma of the system in its 
motion with respect to its center of mass, that is of the motion relative 
to the coordinate system Olxlylzl whose origin 0, is at the comBon center 
of mars of the solid and the liquid, and,whose axes are parallel to the 
fixed axes. In the problem of the stability of rotation of a solid with 
a liquid-filled cavity this circuaistance pervaits the consideration only 
of the relative motion, as if the mass center 0, of the system were 
fixed. 

We shall introduce another rectangular coordinate system Oxyz, moving 
with the solid. 

In the case when the liquid entirely fills the cavity, the origin of 
the moving coordinate system 0 will coincide with the mass center 0, of 
the whole system and the coordinate axes will coincide with the prin- 
cipal axes of inertia of the-solid. In the case, when the liquid in the 
cavity has a free surface under a constsntpressure, the originOwil1 
coincide with the mass center of the solid, and the coordinate axes will 
be along the principal central axes of inertia. In both cases the axis 
Oz will be along the camaon axis of revolution of the central ellipsoid 
of inertia of the solid and of its cavity. The momants ofinertiaof the 
solid about the x, y, z axes are A = B, C respectively, and the direc- 
tion cosines of the constlrnt direction axis Olzl with respect to the 
fixed axes are yl, y2, yj respectively. 

In order to begin from some concrete example we shall consider the 
case &en the center of mass of the whole systsa is in rectilinear motion 

with constant velocity. lhis case is the well hnom approximation to a 
small se-t of a flat trajectory of a missile. b shall ass-, as in 
the case of a solid propellant missile, that the liquid charged missile 
is subject only to the overturning couple of the forces of air pressure 
13 1. The maaant of this couple is ass& to be proportional to the sine 
of the angle between the Or axis and the direction of tha velocity of the 

mas center of the system 0,; let the x, y, 2 compcnents of this moment 

beL1= ay2,L2=-syl, L = 0 respectively, where a is a constant. We 

assume alao that the axis b Iz1 coincides with the velocity vector of the 

mass center 0,. Ihe reasons for the above assqtion will be omitted, 
but we shall mention that the maallar the volume of the air bubble in 
the filling liquid the better the approximation. 

Applying the general theorems on relative motion of a machanical 
system about its mass center we could obtain soam of the first integrals 
of the equations of motion of a solid with a liquid-filled cavity. 
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when we consider the motion of the system with respect to the Olxlylzl 
axes, the real displacements of the body and of the liquid in its cavity 
belong to the set of possible displacements of the system. Since under 
the assqtions, listed above, the forces of the air pressure could be 
represented by the force function V = - a y3, the total kinetic energy in 
the relative motion of the system could be expressed as 

T, + T2 + ay, = const (2.1) 

where Tl and T2 represent the kinetic energies of the solid and of the 
liquid, respectively, in their motion with respect to the coordinate 
system OIXIYIZl. 

J-et Vl# v2, u3 and y, y , y be the n, y, z components of Vo, which 
is the velocity vector of the point 0, and of the instantaneous angular 
velocity vector ij respectively. lhen 

where M, is the mass of the solid. In the case when the liquid fills the 
cavity entirely, it is obvious that u1 = u9 = u3 = 0. 

Let p be the density of the liquid and ux, uY, uz be the x, y, z corn- 
ponents of the velocity vector V of the particles of the liquid with 
respect to the coordinate system OIxlyIzI. ‘Ihen 

2T, = p \ (ux2 + vy2 + vz2) dr 
T 

where I is the volune of the xyz space occupied by the liquid at the 
given instant. 

Under our assumption the forces exerted on the body by air pressure 
have no torque about the Olzl axis; therefore the relative motion of the 
system has the integral of areas 

where by 
(Awl + gl) ~1 + (Am2 + g2) ~2 + (Co, + gs) ys = const (2.2) 

go = P (?I% - 2%) d7, s & = P (zvux - w) ds, 
s 

g, = p (q, - yvX) dT (2.3) 
,c s + G- 

are denoted the x, y, z components of the moowntm of the liquid in its 
motion with respect to the coordinate axes OIxlylzl. 

Since the manentum of the relative motion of the system is 

M,v,+p\vdr=O 
7 

the angular mamemtum of the relative motion of the system is the sane for 
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all points of the space. We shall write down the following obvious 
identity 

T12 +ra2+ra2 = 1 

for the direction cosines of the Olzl axis. 

(2.4) 

For cavities which are bodies of revolution, the monmt of the pres- 
sure forces of au ideal liquid aud of the air inside the cavity about 
the Oz axis, obviously equals zero. Since A = B and L, = 0, at any in- 
stant of time during the motion, the z-coqonent of the instantaneous 
angular velocity vector remains constant: 

wQ= const (2.5) 

humg the real motions of a solid body with a cavity filled with au 
ideal liquid, we have a uniform rotation of the solid with the angular 
velocity o about the ch axis, which is colinear with the OIzl axis; 
since in this case the motion of the liquid is steady and such that the 
x and y components of its angular maaentumequalsero, and the 2 com- 
ponent is the constant g. Since according to our asmmptions the liquid 
is inviscid, and the cavity is a body of revolution, this set of steady 
rotations includes in particular that of equilibrium with respect to the 
coordinate system OIxlylzI; in such a case g = 0. U&r certain coudi- 
tions there is also possible another extreme case of the liquid rotating 
as a rigid body with the angular velocity o. In this case 

g = q i (x2 + y2P 

where r0 is the voluae occupied by the liquid in this motion. 

We shall consider now the stability of rotatiou of a solid aud of the 
corresponding steady motion of the liquid in its cavity: 

01 = 0, = 0, 02= 0, 71 = 72 = 0, 78’ 1 

01 = v2 = us = 0, g, = g2 = O, &78 = g (2.6) 

with respect to the quautities ol# 02# 03~ yl, yzr y3, g,* g,# g,, vlJ 
02, us. In the case wheu the liquid fills the cavity entirely we shall 
consider the stsbility with respect to the first nine of the quautities. 

In the perturbed motion we shall substitute 

US = 0 + E, gS= g+% 78=1+t 

and for the remaining variables e shall retain the previous symbols. 
‘lhe integrals (2.1), (2.2), (2.4), (2.5) for the perturbed motion becoam 
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V, = Ml (v12 + ua2 + use) + A (or2 _t Q) + C (E2 + 2oE) -i- 2T, + 2at = cod 

~,=(~~,+g,)~,+(~~2+ga)~a+C4+~+C(~+E)C +k+$C=const 

v, = r12+r22+t2+ 2f= 0, V 4 = E = const (2.7) 

We shall consider also the following function 

HIE M, (2q+v,2+2$33+f4 (~124-@22) + c (E2+24) + 

+ f (g12+ga2 -i-&Pj t ?3 -I- 2at 

where S is a quantity proportional to the greatest of the principal 
monmnts of inertia of the liquid in its cavity for the point 0. 

On the strength of the Liapunov’s inequality gl’ + g22 + gS2 < 21;s 
we can make the statement that 

H1 < VI = const 

Let us consider the function 
w3) 

V=H,+2hV,-(a+Cd+gh)V3-2C(m+4)V4+ c(CiA) Vd2= 

= Ao12+ 2x (Awl+ g,) rl- (a + Cd + gh) n2+ $ g12 + Jflv12+ 

+ Aoz2 + 2h (~4~2 + g2) 72 - (a + Cd + gx) r22 + ; g,2 + M922+ ; E2+ 

-t2~(C4+~)t-(~+Co).+g~)t2+~lq+M~~~2+2~+~)~ (2.9) 

which represents the swn of three quadratic forms of the se type in 
four variables, and one linear function in the variable q ; X is a con- 
stant. According to Sylvester’s criterion, the necessary and sufficient 
condition that the quadratic part of V he positive-definite is that there 
exists a X such that 

(d+S)h2+(C~+g)X+a<o (2.10) 

‘Ihe inequality is possible if the polynomial on the left hand side of 
(2.10) has two distinct real roots X, and X2; that is if 

(C 0 + g)2 - 4(d+S)a>O (2.11) 

If the condition (2.11) is satisfied we could choose the constant A 
arbitrarily in the interval X, < X < X2; if also 

(gP+~)r>O (2.12) 

then the function Y will he positive-definite in all its variables. 

On the strength of the inequality (2.8) 
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v < V, + 2hVz - (a + Cok + g’h)Va - 2c (0 + h)‘V, + c ‘CA A) Vd’ 

Consequently, when the conditions (2.11), (2.12) are satisfied the 
function V satisfies the conditions of the previously proved theorem. 

lhus, the conditions (2.11), (2.12) could be regarded as the necessary 
conditions for the stability of the unperturbed motion of the system 
(2.6) with respect to the quantities q, 029 031 g1, kc,, i!T31 YlY Y3P Y3, 
VI' v , "3. Let us mention that if we set A = -g/S, then the condition 
(2.123 will be satisfied, the inequality (2.10) assumes the form 

(Cw-A$)+>0 (2.13) 

and becomes the single sufficient condition for stability of the unper- 
turbed motion (2.6). 

If we set X = -2a/Go, then tbe inequalities (2.10) and (2.12) be- 
come the stability conditions (2.121 and (2.13) given in the paper [2 1. 

It is also easily seen [2 I, that if the motion of the liquid entirely 
filling the cavity is always irrotational, with the velocity potential (p, 
then the condition (2.12) is satisfied. 

We shall finally show that the condition (2.11) is the sufficient con- 
dition for the stability of the unperturbed motion (2.6) in the first 
approximation. let us write down the third equation of the perturbed 
motion 12 1: 

2 + “lg2 -to2gl=o 

kwdints yI 02’ glr g2 as small quantities of the first order and 
neglecting their products, we obtain the integral of the equation in 
variations 

V, =q =const 

We shall consider the function 

W=V-2($+9V, (2.14) 

where the function V is defined by the equation (2.9). It is obvious, 
that the necessary and sufficient condition for the positive-definiteness 
of the function (2.14) is the condition (2.11) which proves out state- 
ment. 
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