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1. Let us consider an arbitrary holonomic mechanical system, and let
91, +-+» 9, be its independent Lagrangian coordinates, and ¢,°, ..., gq,”
be its generalized velocities. We shall assume that the equations of
motion of the system have the particular solution

q‘=/f(t) (i=1,...,n (1"1)
corresponding to the unperturbed motion.

Let t, be the initial instant of the time ¢, and q;o and q“' be the
initial values of the variable g; and its time derivative q; .

Let for the unperturbed motion

gio = [i (t0), 310" = fi' (t)
and for the perturbed motion

gio = fi(to) + &1, g’ = i’ (L) + &'

where ¢ ; ¢ ,” are real constants designated as perturbations. The intro-
duction of these constants defines completely the perturbed motion, be-

cause the forces acting on the system are assumed to remain unchanged
[11.

Llet the values of the coordinates ¢, and of the generalized velocities
q;” for the perturbed motion be

g=Lf)+x, @' = fi' (t) + Zaps

where z.(t), (j'= 1, ..., 2n) are the variations of the variables g; and
q;, which satisfy the equations of the perturbed motion

dr

S Xt T Tm) (=t 20) (1.2)
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We shall assume that for every t > t, the functions Xj(t, TR
%,,) can be expanded in convergent power series with integral exponents
in the variables x|, ..., x a» Whose coefficients are real continuous
functions of t, with xj(t, 6, vee, 0) =0,

We are interested in the stability of the unperturbed motion (1.1) with
respect to certain real continwous functions Q,, ..., Qh of the vari-
ables ¢ i» 4 and the time t. For the unperturbed motion the functions
Q, after substituting in them ¢; = f,(t) and ¢;" = f,”(t) transform into
certain known functions of the time } ,(t), and for the perturbed motion
they will transform into certain functions of the time t and of the per-
turbations ¢ ;, ¢ .”. Considering the differences y, = Q, = F,, Liapunov
called the unperturbed motion (1.1) stable with respect to the quantities
Q, ..., Q. if for all L, however small, there exist positive numbers
E;, E;” such that for amy ¢, ¢ ;" satisfying the condition

IB{I<E§, |3{'|<Ei'
and for any t > t,, the following inequalities hold:
| %s| < L (8=1,...,k)

We shall assume further [1] that to any set of real values of the
perturbations ¢ ;, ¢ ;° numerically sufficiently small, there corresponds
a certain set of real initial values ¥,0 of the varisbles y , and that
we could always satisfy the inequality

Y1*+ ety < A

for any positive value of A, however amall, if the absolute values of the
perturbations are not greater than sufficiently small non-zero numbers
E,, E,”. And conversely, for given positive numbers E,, E.°, however
small, there exists such a positive number A, that to the quantity yloz +
cee + ¥ °2 < A there corresponds one or several sets of real ¢, ¢’
whose lute values are smaller than E; and E,” respectively.

Since the variables y, represent certain functions of the variables t,
%, vanishing when all x, = 0, (j = 1, ..., 2n), then the region of
variations of the real variables ¢, x,, ..., Zqn

t> 1o, otz <KH (1.3)
where ¢, and H > 0 are constants, will correspand to the region
t >t it <KH, (1.4)

of variations of the variables t, y_, where H, > 0 is a constant.

We shall assume that (1.2) yields the first integral
®(Z1, . .+ » Tan, t) = const (1.9)
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where ¢ (x,, ..., z,,, t) is a real, continuous, bounded, single-valued
function of its variables in the region (1.3) vanishing when all the
variables x. are zero. Suppose also that at all values of the variables
t, x; in the region (1.3) and at all corresponding valewes of the vari-
ables t, y, in the region (1.4) the following inequality is satisfied:

¢(y1’ e« vy yk, t) <?(xlr LR | zim 1) (1'6)

Here ®(y,, ..., y;, t) is a real, continuous, bounded, single-valued
function of its variables in the region (1.4), vanishing when all the y,
are zero. We can prove now the following theorem:

Theorem. If the differential equations of the perturbed motion (1.2)
admit a first integral (1.5) and it is possible to find a positive-
definite function ®(y,, ..., y;, t) such that the inequality (1.6) is
satisfied for all values of the variables t, x; in the region (1.3) and
for all the corresponding values of the variabies t, y_. 1in the region
(1.4), then the unperturbed motion (1.1) is stable with respect to the
quantities Q), ..., Qb'

Proof. [1]. According to the definition of a definite function we
can find a positive-definite function W(y,, ..., y,) independent of ¢,
such that in the region (1.4) the inequality

P Y YWy, ..., ¥) (1.7)
holds.

Let A> 0 be an arbitrarily small number, smaller than H,, and let !
be the exact lower bound of the function ¥ on the sphere (A’:

Yttt = A

The number ! is obviously positive, since ¥ represents a positive-
definite function.

We shall examine the function ¢ (x,, ..., z,,, t,); since it does not
depend explicitly on the time, it can have an infinitely small upper
bound; consequently, we can find for ! values A and A, such that when
the corresponding values of %; and y, satisfy the conditions "12 4+ .o
+ ‘2;.2 <Aeamdy?+ ...+ Yi 2 < A, respectively, the functions ®(y,,
cer Yy tg) and @y (x;, ..o, x,,, t,) will satisfy the conditions

D(Y1s oo os Y b)) SP (21 -+ oy Zany b)) <1

When the initial values of the variables x;, and the corresponding
variables 1 i a_Jl z 2
¥, are chosen to satisfy the inequality x,,% + ... + 2%, ,<
A, and the corresponding inequality ym’ + oeoe 4+ yz" < Ap )
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according to the conditions of the theorem we have the inequalities

W(yl, ...,yk)<d)(y1. oy Yk t)<?($1, ooy Tgny t)<l (1'8)
We can conclude here, that the variables y, satisfy the condition

et 4
since | is the exact lower bound of the funection ¥ on the sphere (4).
The theorem is proved.

(Note. If instead of (1.6) we had the inequality

w(ylv---v y,,-t)<? (31--'-:32,. ,l) +C (C > 0)

then for a suitabl! chosen value of x;, and for all values of the time
the inequality y, 24 04 ’h <A Iould be satisfied, where 4 is a
number such that the exact lower bound of the function W on the sphere
(A) 1s greater than the number C.

As an example we shall consider the well known problem of stability
of rotation about a vertical axis of a heavy rigid body in the case of
Lagrange [11].

Let p, q, r be the projections of the instantaneous angular velocity
of a rigid body on its principal axes of inertia with respect to a fixed
point; let y, y°, y”- be the direction cosines of the vertical axis with
respect to the principal sxes of inertia. The projections of the angular
monentum on these axes are

Gl = Ap, G’ =Aq, G.= Cr

where A, C are the principal moments of inertia of the rigid body with
respect to its fixed point.

We shall investigate the stability of rotation of the body about the
vertical axis

p=q=0, r="ro T=1'=0, 1'=1 (1.9)

with respect to the quantities G,, G,, Gy, y, y*, y”, assuming that in
the perturbed motion

Gs=G+x, 4 =1+43 (G = Cro)
and retaining the previous symbols for the remaining variables.
On the strength of the obvious inequality
G* + G* + w? < D (Ap* + Ag* 4 CLY) (x=C)-

where D is the greater of the two quantities A and C, the values of the
function
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= % (G1* + Ga? + 92) + 2A (Gry + Gay’ + %d) — (mgz + G (12 + 12 +3%)  (1.10)
for the perturbed motion are not greater than the values of the function

Q= Vl + 2)\Vg —_ (mgz + G)\) Vs —2 (G + C}\) V‘ = const

where Vi(i =1, ..., 4) are the first integrals of the equations of the
perturbed motion (See [11 page 27). A is a constant, mg is the weight
of the body, z is the coordinate of the center of gravity.

According to the just-proved theorem the conditions for the positive-
definiteness of the function (1.10) yield the sufficient conditions for
stability of the unperturbed motion (1.9); this last condition could be
reduced to the inequality

G* — 4Dmgz >0 (1.11)

It is easily seen that if the above inequality is satisfied, then the
Maievskii’s condition Czroz —~ 4 Amgz > 0 is also satisfied; it is well
known that this last condition is the necessary and sufficient condition
for the stability of (1.9)).

2. The theory given above could be useful in the application of the
second Liapunov method to the problems of stability of motion of con-
tinuous media with respect to a finite number of parameters, which
describe the motion through integrals, [2 1. Such perameters could be,
for example, the coordinates of the center of gravity of a bounded
volume of a continuous medium, or projections of its linear momentum on
certain axes, or similar quantities, whose variations with time are
described by ordinary differential equations. The stability of motion of
a continuous medium with respect to the above mentioned parameters will
be called the conditional stability of motion of a continuous medium.

As an example we shall consider the problem of stability of rotation
of a solid with a liquid-filled cavity, with respect to the parameters
describing the motion of the solid and to the projections of the angular
momentum of the liquid [2].

We shall consider a free solid with completely or partially liquid-
filled cavity, and the liquid is assumed to be ideal, non-compressible
and homogeneous. We shall also assume, for simplicity, that the central
ellipsoid of inertia of the solid is an ellipsoid of revolution, and the
cavity is also a body of revolution whose axis coincides with the axis
of the ellipsoid. In the case when the liquid has a free surface we shall
regard the pressure on it to be constant. We shall also assume that the
motion of the liquid is continuous, and that the velocities of the liquid
particles and the pressure are continuous functions of the coordinates.
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Since among the possible displacements of the body and the liquid in
its cavity are rotations about an arbitrary axis and also translatory
displacements of the whole system, the solid plus the liquid, as a single
rigid body, the theorem of the angular momentum of the system in its
motion with respect to its center of mass, that is of the motion relative
to the coordinate system O,r,y,z, whose origin O, is at the common center
of mass of the solid and the liquid, and whose axes are parallel to the
fixed axes. In the problem of the stability of rotation of a solid with
a liquid-filled cavity this circumstance permits the consideration only
of the relative motion, as if the mass center O, of the system were
fixed.

We shall introduce amother rectangular coordinate system Oxyz, moving
with the solid.

In the case when the liquid entirely fills the cavity, the origin of
the moving coordinate system O will coincide with the mass center O, of
the whole system and the coordinate axes will coincide with the prin-
cipal axes of inertia of the solid. In the case, when the liquid in the
cavity has a free surface under a constant pressure, the origin O will
coincide with the mass center of the solid, and the coordinate axes will
be along the principal central axes of inertia. In both cases the axis
Oz will be along the common axis of revolution of the central ellipsoid
of inertia of the solid and of its cavity. The moments of inertia of the
solid about the z, y, z axes are A = B, C respectively, and the direc-
tion cosines of the constant direction axis 0,z, with respect to the
fixed axes are y,, y,, y; respectively.

In order to begin from some concrete example we shall consider the
case when the center of mass of the whole system is in rectilinear motion
with constant velocity. This case is the well known approximation to a
small segment of a flat trajectory of a missile. We shall assume, as in
the case of a solid propellant missile, that the liquid charged missile
is subject only to the overturning couple of the forces of air pressure
[3]. The moment of this couple is assumed to be proportional to the sine
of the angle between the Oz axis and the direction of the velocity of the
mas center of the system 0,; let the z, y, z components of this moment
be L, = ay,, L, = —ay,, Ly = 0 respectively, where a is a constant. We
assume also that the axis 0z, coincides with the velocity vector of the
mass center O,. The reasons for the above assumption will be omitted,
but we shall mention that the smaller the volume of the air bubble in
the filling liquid the better the approximation.

Applying the general theorems on relative motion of a mechanical
system about its mass center we could obtain some of the first integrals
of the equations of motion of a solid with a liquid-filled cavity.
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When we consider the motion of the system with respect to the O,x,y,z,
axes, the real displacements of the body and of the liquid in its cavity
belong to the set of possible displacements of the system. Since under
the assumptions, listed above, the forces of the air pressure could be
represented by the force function U= -ay,, the total kinetic energy in
the relative motion of the system could be expressed as

Ty+4 Ty + ays = const (2.1)

where T, and T, represent the kinetic energies of the solid and of the
liquid, respectively, in their motion with respect to the coordinate
system 0,x,y,z,.

Let v,, v;, v; and @, @, w; be the x, y, z components of ¥, which
is the velocity vector of the point 0, and of the instantaneous angular
velocity vector & respectively. Then

2Ty = My (v1® + v® + v5%) + A (01® + 0,%) + Coy?

where M, is the mass of the solid. In the case when the liquid fills the
cavity entirely, it is obvious that v, = vy = vy = 0.

Let p be the density of the liquid and vy v, v, be the x, y, z com-
ponents of the velocity vector V of the particles of the liquid with
respect to the coordinate system O,x,y,z;. Then

2T, =p S (02?4 v + v %) d

where r is the volume of the xyz space occupied by the liquid at the
given instant.

Under our assumption the forces exerted on the body by air pressure

have no torque about the 0,z, axis; therefore the relative motion of the
system has the integral of areas

(Aoy + 81) 11 + (4o 4 g2) 12 + (Cw; + g5) 15 = const (2.2)
where by

gr=p{ @ —m)de, ga=p{eon—a)dn gy =p{ (o, ~pgde 23
<

T T
are denoted the x, y, z components of the momentum of the liquid in its
motion with respect to the coordinate axes 0yx,y,2,.

Since the momentum of the relative motion of the system is

M1v°+pSVd‘C= 0

T

the angular momentum of the relative motion of the system is the same for
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all points of the space. We shall write down the following obvious
identity

Wttt =1 (2.4)
for the direction cosines of the 0,z, axis.

For cavities which are bodies of revolution, the moment of the pres-
sure forces of an ideal liquid and of the air inside the cavity about
the Oz axis, obviously equals zero. Since A = B and Ly = 0, at any in-
stant of time during the motion, the z-component of the instantaneous
angular velocity vector remains constant:

wg = const (2.9)

Among the real motions of a solid body with a cavity filled with an
ideal liquid, we have a uniform rotation of the solid with the angular
velocity w about the 0z axis, which is colinear with the 0,z, axis;
since in this case the motion of the liquid is steady and such that the
z and y components of its angular momentum equal zero, and the z com-
ponent is the constant g. Since according to our assumptions the liquid
is inviscid, and the cavity is a body of revolution, this set of steady
rotations includes in particular that of equilibrium with respect to the
coordinate system 0,x,y,z,; in such a case g = 0. Under certain condi-
tions there is also possible another extreme case of the liquid rotating
as a rigid body with the angular velocity @. In this case

g =up @+
where r, is the volume occupied by the liquid in this motion.
We shall consider now the stability of rotation of a solid and of the

corresponding steady motion of the liquid in its cavity:

(01=(Dg=0, Wa = W, 71=72=0' T3=1
v =0, =0y,=0, g1=8:=0, gs=g (28)
with respect to the quantities W, @y, @y, ¥ys Vg V3o 8yr Bgs By Vi

vy, Vy. In the case when the liquid fills the cavity entirely we shall
consider the stability with respect to the first nine of the quantities.

In the perturbed motion we shall substitute
w3 = o+ §, =g+ 73=1+C

and for the remaining variables we shall retain the previous symbols.
The integrals (2.1), (2.2), (2.4), (2.5) for the perturbed motion become
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Vy= M, (v + vs* +v5%) + A(0,® + 0% + C (£ + 20f) -+ 2T3 + 2af = const
Vy=(Aw; + g) 11+ (doy + go) ¥ + CE+ M+ C 0 +8) T + (g + )8 = const
Vi=1+ 17+ +20=0, Vy=E= const (2.7)

We shall consider also the following function

Hy= My (0240224059 + 4 (0,°+0,%) + C (8 +20f) +
+ % (g:°+82" +2gn + 17) + 248

vhere S is a quantity proportional to the greatest of the principal
moments of inertia of the liquid in its cavity for the point O.

On the strength of the Liapunov’s inequality gl2 + 812 + g:,2 <2T,S
we can make the statement that

H,V;=const (2.8)

lLet us consider the function

V=H+2W,— @+ Coh+ ) Va— 20 @+ NV, + ZE Dy
= Ao+ 2M (4o ) 11— (@ + Cok 4- g)) 12+ L%glz + M+
]
+ Aw,® + 20 (Awg + g5) Y2 — (@ + Cok + gV 15° -+ é—ggz + M+ % -
+DM(CE+)E— @+ Coh+ )+ 5t M+ 2(5 +20)q  (29)
which represents the sum of three quadratic forms of the same type in
four variables, and one linear function in the variable n; A is a con-
stant. According to Sylvester's criterion, the necessary and sufficient

condition that the quadratic part of V be positive-definite is that there
exists a A such that

(4+8M+ (Cot+h+a<0 (2.10)

The inequality is possible if the polynomial on the left hand side of
(2.10) has two distinct real roots A, and A,; that is if

Co+eP—4(A+8a>0 (2.11)

If the condition (2.11) is satisfied we could choose the constant A
arbitrarily in the interval A, < A < A,; if also

(g/S+Nn>0 (2.12)
then the function ¥V will be positive-definite in all its variables.

On the strength of the inequality (2.8)
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V420, —(a + Cor + gV — 2C (0 + NV, + .C_(C_;_Alv‘-

Consequently, when the conditions (2.11), (2.12) are satisfied the
function V satisfies the conditions of the previously proved theorem.

Thus, the conditions (2.11), (2.12) could be regarded as the necessary
conditions for the stability of the unperturbed motion of the system
(2.6) with respect to the quantities w,, w,, @3, g, 82, &3, Y1+ Y2 V3
vy, 03, vy. Let us mention that if we set A = —g/S, then the condition

(2 12 w111 be satisfied, the inequality (2.10) assumes the form
(Cw— A%)gs——a>0 (2.13)

and becomes the single sufficient condition for stability of the unper-
turbed motion (2.6).

If we set A = - 2a/Cw, then the inequalities (2.10) and (2.12) be-
come the stability conditions (2.12) and (2.13) given in the paper [2].

It is also easily seen [2 ], that if the motion of the liquid entirely
filling the cavity is always irrotational, with the velocity potential ¢,
then the condition (2.12) is satisfied.

We shall finally show that the condition (2.11) is the sufficient con-
dition for the stability of the unperturbed motion (2.6) in the first
approximation. Let us write down the third equation of the perturbed
motion [2]:

d
£+w1g2—w2g1=0

Regarding w,, @w,, g,, g, as small quantities of the first order and
neglecting their products, we obtain the integral of the equation in
variations

Vs = m = const

We shall consider the function
W=V — 2( +1)V5 (2.14)

where the function V is defined by the equation (2.9). It is obvious,
that the necessary and sufficient condition for the positive-definiteness
of the function (2.14) is the condition (2.11) which proves out state-
ment.
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